On PAC Learning Algorithms for Rich Boolean Function Classes
نویسنده
چکیده
We survey the fastest known algorithms for learning various expressive classes of Boolean functions in the Probably Approximately Correct (PAC) learning model.
منابع مشابه
COMS 6253 : Advanced
Previously: • Administrative basics, introduction and high-level overview • Concept classes and the relationships among them: DNF formulas, decision trees, decision lists, linear and polynomial threshold functions. • The Probably Approximately Correct (PAC) learning model. • PAC learning linear threshold functions in poly(n, 1/ , log 1/δ) time • PAC learning polynomial threshold functions. Toda...
متن کاملLearning DNF by Approximating Inclusion-Exclusion Formulae
Probably Approximately Correct learning algorithms generalize a small number of examples about an unknown concept into a function that can predict a future observation. More formally, let X and Y be the instance and outcome spaces, respectively. Then a PAC algorithm observes randomly drawn examples (x; f(x)) about an unknown concept f : X ! Y . These examples are independently and identically d...
متن کاملOn the Learnability of Rich Function Classes
The probably approximately correct (PAC) model of learning and its extension to real-valued function classes sets a rigorous framework based upon which the complexity of learning a target from a function class using a finite sample can be computed. There is one main restriction, however, that the function class have a finite VC-dimension or scale-sensitive pseudo-dimension. In this paper we pre...
متن کاملOnline Learning of k-CNF Boolean Functions
This paper revisits the problem of learning a k-CNF Boolean function from examples, for fixed k, in the context of online learning under the logarithmic loss. We give a Bayesian interpretation to one of Valiant’s classic PAC learning algorithms, which we then build upon to derive three efficient, online, probabilistic, supervised learning algorithms for predicting the output of an unknown k-CNF...
متن کاملMaximum Margin Algorithms with Boolean Kernels
Recent work has introduced Boolean kernels with which one can learn linear threshold functions over a feature space containing all conjunctions of length up to k (for any 1≤ k≤ n) over the original n Boolean features in the input space. This motivates the question of whether maximum margin algorithms such as Support Vector Machines can learn Disjunctive Normal Form expressions in the Probably A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 384 شماره
صفحات -
تاریخ انتشار 2006