On PAC Learning Algorithms for Rich Boolean Function Classes

نویسنده

  • Rocco A. Servedio
چکیده

We survey the fastest known algorithms for learning various expressive classes of Boolean functions in the Probably Approximately Correct (PAC) learning model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMS 6253 : Advanced

Previously: • Administrative basics, introduction and high-level overview • Concept classes and the relationships among them: DNF formulas, decision trees, decision lists, linear and polynomial threshold functions. • The Probably Approximately Correct (PAC) learning model. • PAC learning linear threshold functions in poly(n, 1/ , log 1/δ) time • PAC learning polynomial threshold functions. Toda...

متن کامل

Learning DNF by Approximating Inclusion-Exclusion Formulae

Probably Approximately Correct learning algorithms generalize a small number of examples about an unknown concept into a function that can predict a future observation. More formally, let X and Y be the instance and outcome spaces, respectively. Then a PAC algorithm observes randomly drawn examples (x; f(x)) about an unknown concept f : X ! Y . These examples are independently and identically d...

متن کامل

On the Learnability of Rich Function Classes

The probably approximately correct (PAC) model of learning and its extension to real-valued function classes sets a rigorous framework based upon which the complexity of learning a target from a function class using a finite sample can be computed. There is one main restriction, however, that the function class have a finite VC-dimension or scale-sensitive pseudo-dimension. In this paper we pre...

متن کامل

Online Learning of k-CNF Boolean Functions

This paper revisits the problem of learning a k-CNF Boolean function from examples, for fixed k, in the context of online learning under the logarithmic loss. We give a Bayesian interpretation to one of Valiant’s classic PAC learning algorithms, which we then build upon to derive three efficient, online, probabilistic, supervised learning algorithms for predicting the output of an unknown k-CNF...

متن کامل

Maximum Margin Algorithms with Boolean Kernels

Recent work has introduced Boolean kernels with which one can learn linear threshold functions over a feature space containing all conjunctions of length up to k (for any 1≤ k≤ n) over the original n Boolean features in the input space. This motivates the question of whether maximum margin algorithms such as Support Vector Machines can learn Disjunctive Normal Form expressions in the Probably A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 384  شماره 

صفحات  -

تاریخ انتشار 2006